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Motivation

A better understanding of the mechanics of human birth may
decrease the incidence of unnecessary surgical delivery.



Considering Fluid Dynamics Is Essential

Amniotic fluid is highly variable

I in volume [1]

I in rheological properties [2]

It is unknown how these fluid proper-
ties affect the transfer of force from
the uterus onto the baby during deliv-
ery.

Fluid dynamics were shown to signif-

icantly affect the force necessary for

delivery in a model vacuum-assisted

delivery. [3]
Experimental set-up at Leftwich laboratory for model

vacuum-assisted delivery. [3]

[1] Brace, Wolf, American J. of Obstetrics and Gynecology, 1989
[2] Uyeno, J. of Biological Chemistry, 1919
[3] Lehn, Baumer, Leftwich, J. of Biomechanics, 2016



A Simplified Physical Experiment

Schematics courtesy of Alexa Baumer, Leftwich laboratory, The George Washington University



A Simplified Physical Experiment

Physical experiment at Leftwich laboratory, The George Washington University



Flow Through Elastic Tubes

The Starling Resistor [5] model

I elastic tubing mounted at ends on rigid tubes (see figure)

I when approximated by a ring, buckling with n-fold symmetry [6,7]

I 3D shell models for elastic tube in Stokes and N-S flow [4]

I fiber tube models mimic muscle architecture with varied buckling
behavior [8,9,10]

Figure: [4] Grotberg, Jensen, Annual Rev. Fluid Mech., 2004
[5] Knowlton, Starling, J. of Physiology, 1912
[6] Tadjbakhsh, Odeh, J. of Mathematical Analysis and Applications, 1967
[7] Flaherty, Keller, Rubinow, SIAM J. of Applied Math, 1972
[8] Rosar, Peskin, New York J. of Math, 2001
[9] El Hamdaoui, Merodio, Ogden, International J. of Solids and Structures, 2015
[10] Qi, Gao, Ogden, Hill, Holzapfel, Han, Luo, J. of Mech. Behavior of Biomed. Materials, 2015



Spring Network Model of Elastic Tube

I Tube modeled by network of
Hookean springs oriented
longitudinally, circumferentially,
and helically.

I Force at point xl due to spring
from point xm:

g(xl) = τ
(
‖xm−xl‖

∆lm
− 1
)

(xm−xl )
‖xm−xl‖

I Total force due to springs at the
points xl is the sum of forces
from 10 to 16 springs connected
to xl .

circumference

length



Spring Network Model of Elastic Tube

Total elastic energy stored in the discrete spring system [11]:

En =
∑

springs

τ

2∆lm
(||xm − xl || −∆lm)2

where τ is the spring constant of every spring, ∆lm is the spring resting length.

Total elastic energy stored in a homogeneous elastic tube [12]:

E =
1

2
Aβ2L

where A = E I is the bending stiffness of the tube, E is the tube’s Young’s
modulus, I is the tube’s second moment of area, β its curvature, and L its
length.

By enforcing En = E for various curvatures β, we can relate individual spring

stiffness to macroscopic elastic energy to choose τ .

[11] Nguyen, Fauci. J. of The Royal Soc. Interface, 2014
[12] Kelly. 2013



Modeling Fluid Structure Interaction

Low Reynolds number in physical experiment → Stokes equations:

0 = µ∆u−∇p + f0δ(x− x0)

0 = ∇ · u

Fundamental solution, Stokeslet:

u(x) =
1

µ
(f0 · ∇)∇B − f0G

=
1

8πµ

(
f0

||x− x0||
+

(f0 · x)x

||x− x0||3

)
where ∆G = δ(x− x0),∆B = G .



Regularization of Stokes Equations

Some numerical difficulty can be resolved by using regularization
to eliminate the singularity in u at x0 due to force f0.

Method of regularized Stokeslets [13]
- consider Stokes equations for regularized forces

0 = µ∆u−∇p + f0φε(x− x0)

0 = ∇ · u

where the blob function φε satisfies
∫
φε dx = 1 and

lim
ε→0
〈φε, ψ〉 = 〈δ, ψ〉

for any test function ψ (integrable, with compact support).

[13] Cortez, SIAM J. Sci. Comp., 2001



Regularization of Stokes Equations

Stokes equations for regularized forces:

0 = µ∆u−∇p + f0φε(x− x0)

0 = ∇ · u

Solution to regularized Stokes equations:

u(x) =
1

µ
(f0 · ∇)∇Bε− f0Gε

where ∆Gε = φε(x− x0),∆Bε = Gε.

We use the blob function φε = 15ε4

8π(||x−x0||2+ε2)(7/2) . [14]

[14] Cortez, Fauci, Medovikov, Physics of Fluids, 2005



Algorithm

Using the solution to the regularized Stokes equations u = Af

(1) Calculate spring forces in the tube based on its deformation. Calculate
the velocity they induce on the inner cylinder and fixed tube ends (matrix
multiplication).

(2) Solve for additional forces necessary on inner cylinder and tube ends to
achieve prescribed velocities, using BiCGSTAB iterative method to solve
linear system. [15]

(3) Evaluate the velocity at points on tube (matrix multiplication).

(4) Update the tube and rod positions using these velocities and prescribed
velocities one step forward in time, using Forward Euler time-stepping.

(5) Repeat.

[15] Van der Vorst, SIAM J. Sci. Stat. Comput., 1992



Model Validation and Regularization Parameter Choice

For concentric rigid cylinders of infinite length, with outer tube of radius RT

fixed and inner cylinder of radius RC moving at constant velocity U:

I Velocity profile between cylinders is given by: u(r) = U(ln(Rt )−ln(r))
ln(Rt )−ln(Rc )

I Traction at a point on the side of inner cylinder is: t = µU

Rc ln
(

RT
RC

)
I Compared to numerical results for finite-length concentric rigid cylinders:



Model Validation and Regularization Parameter Choice

For concentric rigid cylinders of infinite length, with outer tube of radius RT

fixed and inner cylinder of radius RC moving at constant velocity U:

I Velocity profile between cylinders is given by: u(r) = U(ln(Rt )−ln(r))
ln(Rt )−ln(Rc )

I Traction at a point on the side of inner cylinder is: τ = µU

Rc ln
(

RT
RC

)
I Compared to numerical results for finite-length concentric rigid cylinders:



A case study

Inner cylinder through elastic tube, from side


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





A case study

Inner cylinder through elastic tube, from end


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}




A case study

Fluid pressure Fluid velocity


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}




A case study

Longitudinal strain Circumferential strain



A case study

Longitudinal strain Circumferential strain


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton5'){ocgs[i].state=false;}}




A case study

Tube deformation over time



A case study

Force on inner cylinder to achieve prescribed velocity



Effect of varying velocity

Force on inner cylinder to achieve varying prescribed velocity



Effect of varying velocity

Tube deformation for varying prescribed velocity

U=0.1 U=0.2 U=0.4 U=0.8 U=1.6



Algorithm 2 (no prescribed velocity)

A modification:

I force input is more realistic for biological applications than prescribed
velocity

I force input gives us the freedom to activate the tube

we build an elastic spring cylinder, with every point connected to every other
point by a spring with force

gc(xl) = τc

(
‖xm − xl‖

∆lm
− 1

)
(xm − xl)

‖xm − xl‖

and we anchor the tube ends with forces that penalize moving away from their
initial positions

gp(xl) = τp||xm − xl ||(xm − xl)



Algorithm 2 (no prescribed velocity)

Using the solution to the regularized Stokes equations u = Af

(1) Calculate spring forces in the tube and in the inner cylinder based on
their deformation.

(2) Calculate penalty forces on tube ends based on their position.

(3) Add prescribed forces to inner cylinder to “push” it through the tube.

(3) Evaluate the velocity at points on tube and inner cylinder (matrix
multiplication).

(4) Update the tube and rod positions using these velocities and prescribed
velocities one step forward in time, using Forward Euler time-stepping.

(5) Repeat.



Algorithm 2 (no prescribed velocity)

Benefits

I speed

I Method #1: BiCGSTAB + 2[Af] = O(Nn2) flops,
where N = number of iterations to convergence of linear solver at
each time step (≈ 100),

n = number of rows in A
I Method #2: [Af] = O(n2) flops, also linear speed-up
I Small sample problem (n = 6396, assume N = 100):

I 8.27× 109 vs. 4.09× 107

I any force input



Inner cylinder alignment

Inner cylinder shifted 0.25 cm toward tube wall



Inner cylinder alignment

Inner cylinder shifted 0.25 cm toward tube wall


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton6'){ocgs[i].state=false;}}



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton7'){ocgs[i].state=false;}}




Inner cylinder alignment



Peristaltic contractions - periodic velocity input


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton8'){ocgs[i].state=false;}}



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton9'){ocgs[i].state=false;}}




Peristaltic contractions - periodic velocity input



Peristaltic contractions - periodic force input



Peristaltic contractions - contracting tube


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton10'){ocgs[i].state=false;}}




Peristaltic contractions - contracting tube


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton11'){ocgs[i].state=false;}}




Peristaltic contractions - contracting tube

Effect on average velocity of inner cylinder of varying parameters



Decreased inner cylinder velocity with increased
contraction speed



Peristaltic contractions - contracting tube

Tube deformation for varying contraction force



Tube number

We aim to find a “tube number” similar to the “sperm number” used to clas-
sify buckling in elastic fibers, in order to predict tube buckling behavior.

Similar in form to

I η1 = Λ
(
ξ⊥
TA

)1/4

where Λ is the wave length of the buckling, ξ⊥ is a perpendicular
resistance coefficient, T is a characteristic time, A is the bending rigidity
of the fiber [16]

I η2 = 8πµγ̇L4

− log(λ2e)A

where µ is fluid viscosity, γ̇ is a strain rate, λ is fiber’s aspect ratio [17]

[16] Lauga, Eloy, J. Fluid Mech., 2013
[17] Yang, Fauci, J. Fluid Mech., 2017



Tube number

η =
ξ⊥γ̇L

4

E I
=

µUL4
T

(RT − RC )RT ln
(
RT
RC

)
h3E

where µ is fluid viscosity, U inner cylinder velocity, LT tube length,
RT tube radius, RC inner cylinder radius, h tube wall thickness, E
Young’s modulus of tube



Tube number

Elastic dynamics creates nonlinear relationship between forces and velocity,
despite linearity of Stokes equations.

Non-dimensionalizing the Stokes equations:

0 = −∇∗p∗ + µ∆∗u∗,

Let p∗ = Ep, x∗ = Lx, u∗ = Uu

=⇒ 0 = −∇p +
µU

LE ∆u

where µ is fluid viscosity, U is a characteristic velocity, L a characteristic
length, E the Young’s modulus of the tube, p is fluid pressure, u is fluid ve-
locity [13]

Using dimensional analysis, we can show

f =
µ2U2

E ζ

(
µU

ERC
,
µU

ERT
,
µU

ELC
,
µU

ELT

)
For a set system geometry and fixed µU/E , f = CµU.

Thus linearity is restored to the system.



Tube number

For constant η, linear force-velocity relationship...

...and invariant elastic buckling.



Tube number

Effect of varying η

Blue:
RT ≈ 1.613
Red:
RT � 1.613
Black:

RT � 1.613



Conclusions

I Preliminary model of human birth so far used to
I relate size, velocity, and initial position of inner cylinder to

forces on inner cylinder and strain and deformation in tube
I activate tube with peristaltic contractions
I predict tube buckling behavior based on system parameters

I Future developments
I biologically based model of birth canal (closed end, muscle

structure)
I rheological properties of amniotic fluid and other involved

fluids
I shape and elasticity of ‘fetus’

I End goal:
I a numerical model able to predict the circumstances under

which vaginal birth can progress successfully, and when it may
become unsafe
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