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Motivation

Vaginal delivery is linked to

I shorter post-birth hospital stays

I lower likelihood of intensive care
stays

I lower mortality rates [1]

Fluid mechanics greatly informs the

total mechanics of birth. [2]

I How do the involved fluids
inform the forces on an
infant during birth?

[1] C. S. Buhimschi, I. A. Buhimschi (2006). Advantages of vaginal delivery, Clinical obstetrics and gynecology.
[2] A. M. Lehn, A. Baumer, M. C. Leftwich, An experimental approach to a simplified model of human birth.
Fig. 1: “HumanNewborn” by Ernest F - Own work. Licensed under CC BY-SA 3.0 via Commons - https://
commons.wikimedia.org/wiki/File:HumanNewborn.JPG#/media/File:HumanNewborn.JPG

Fig. 2: “Postpartum baby2” by Tom Adriaenssen - http://www.flickr.com/photos/inferis/110652572/.
Licensed under CC BY-SA 2.0 via Commons - https://commons.wikimedia.org/wiki/File:Postpartum_baby2.
jpg#/media/File:Postpartum_baby2.jpg
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A simplified model

I Rigid acrylic cylinder (fetus)

I Passive elastic tube (birth canal)

I Viscous fluid (amniotic fluid)

I Rigid cylinder is pulled through center of elastic tube at prescribed
velocity, and drag force is measured.



Physical Experiment



Numerical Model


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Numerical model: solid behavior

Elastic tube

I Tube modeled by network of
Hookean springs.

I Force at point xl due to spring
from point xm:

g(xl) = τ
(
‖xm−xl‖

∆lm
− 1
)

(xm−xl )
‖xm−xl‖

I τ chosen to match elastic
properties to physical
experiment. [3]

Rigid inner cylinder

I A constant velocity u = U is
specified in the z-direction.

circumference

z

[3] H. Nguyen and L. Fauci (2014). Hydrodynamics of diatom chains and semiflexible fibres, J. R. Soc. Interface.



Numerical model: fluid dynamics

Fluid Behavior is governed by the Stokes equations, with regularized forces at
K discrete points in the system:

0 = −∇p + µ∆u +
∑K

k=0 fkφε(x− xk),∇ · u = 0,

which have solution [4],[5]

u(x) =
1

µ

K∑
k=1

[(fk · ∇)∇Bε(|x− xk |)− fkGε(|x− xk |)] ,

p(x) =
K∑

k=1

[fk · ∇Gε(|x− xk |)] ,

where ∆Bε = Gε,∆Gε = φε(r) = 15ε4

8π(r2+ε2)(7/2) .

Here, µ is viscosity, xk are points on discretized tube and rod, fk is the force at

that point, and ε is a regularization parameter.

[4] R. Cortez (2001). Method of Regularized Stokeslets, SIAM Journal of Scientific Computing.
[5] R. Cortez, L. Fauci, A. Medovikov (2005). The method of regularized Stokeslets in three dimensions: analysis,
validation, and application to helical swimming, Physics of Fluids.



Numerical model: algorithm

Using the solution to the regularized Stokes equations for a given regulariza-
tion function φε:

(1) Calculate spring forces in the tube based on its deformation, and
calculate the velocity they induce on the inner cylinder.

(2) Solve for additional forces necessary on inner cylinder points to achieve
its desired constant velocity.

(3) Evaluate the velocity points on tube and inner cylinder. (Velocity and
pressure can be evaluated at any other point in the system.)

(4) Update the tube and rod positions using these velocities one step forward
in time.

(5) Repeat.



Validation: concentric rigid cylinders

For concentric rigid cylinders of infinite length, with outer tube of radius RT

fixed and inner cylinder of radius RC moving at constant velocity U:

I Velocity profile between cylinders is given by: u(r) = U(ln(Rt )−ln(r))
ln(Rt )−ln(Rc )

I Traction at a point on the side of inner cylinder is: t = µU

Rc ln
(

RT
RC

)
I Compared to numerical results for finite-length concentric rigid cylinders:
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A representative simulation
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A representative simulation
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Tube buckling
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An elastohydrodynamic ratio for invariant elastic behavior

The dimensionless ratio of fluid and elastic “forces”

µU

LE

arises from nondimensionalizing the Stokes equations, where

µ = fluid viscosity,

U = fluid velocity,

E = Young’s modulus of tube,

I = second moment of area of tube,

L = characteristic length scale



An elastohydrodynamic ratio for invariant elastic behavior

The dimensionless ratio of fluid and elastic “forces”

µU

LE

arises from nondimensionalizing the Stokes equations

ROAD BLOCK: There is no single characteristic length scale in
this problem. The elastic behavior varies with tube length, tube
radius, inner cylinder length, inner cylinder radius (or equivalently,
gap size), as well as mesh choice.



An elastohydrodynamic ratio for invariant elastic behavior

The dimensionless ratio of fluid and elastic “forces”

µU

LE

arises from nondimensionalizing the Stokes equations

SOLUTION: Keeping the geometry constant, we consider the di-
mensional elastohydrodynamic ratio

µU

E



Tube buckling under constant elastohydrodynamic ratio
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Pulling force under constant elastohydrodynamic ratio
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Note that the relationship between force and velocity (and between force and
viscosity) is linear, as long as this ratio is constant.



Pulling force for varying elastohydrodynamic ratio
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Future work

I Comparison to physical experiment results
I Increase of realism

I Model peristalsis...
I ...through prescribed periodic velocity
I ...through prescribed periodic forcing
I ...through active elastic tube undergoing periodic contractions

I Explore effect of lateral displacement of inner cylinder
I Vary elastic properties throughout surface of tube
I Add more accurate geometry

Slides available at
math.tulane.edu/~rpealate

math.tulane.edu/~rpealate
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