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Greater understanding of the causes of force on the > A time-dependent velocity U(t) is (x) = EN: [, - VG.(|x — xc)]
infant during childbirth could decrease the specified in the z-direction. P\X) = P k = kiJ1> 0
occurrence of unnecessary Caesarean deliveries. Fluid governed by the Stokes equations: - 154 0.2 | | | | 2 14 16
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of birth. [4] We aim to discover how the involved V-u=0, pr =viscosity, € regularization parameter. [2] Constant veloaty
fluids affect forces on the infant during birth.
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1) find velocity on the tube ends and rod induced by spring forces,

drag force

» Rigid acrylic cylinder (fetus) pulled through center 2) solve for additional forces necessary to achieve prescribed velocities, |
of passive elastic tube (birth canal) 3) evaluate velocity and pressure throughout system, | o 02 04 05 D& 12 14 16 14
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» System immersed in methyl cellulose in water 4) update position of all tube and rod using Forward Euler
(amnIOtIC ﬂL“d) (X = X -I- UAt)’ Elastic tube buckles as inner cylinder moves through

» Force needed to pull the acrylic cylinder at a (5) repeat. e oy e e » Force in ‘peristaltic’ case is equal to or less than the force at the same

prescribed velocity measured as a function of time position in constant velocity case.

- Tube Number and Its Effect on Elastic Buckling

Square wave periodic velocity U(t) is compared with constant velocity
input to mimic forces from peristaltic contraction.

/ » Tube buckling for square wave

_ UR+R~L velocity with max 0.4 (three cases
We define the tube number as n = L(LRT/TLrgsi’ where Rt,Rc are radii of tube and rod, L+,L¢ in bottom row) is very similar to

are lengths of tube and rod, U is rod velocity, £/ is tube bending stiffness. buckling for constant velocity 0.2

» When n is constant, tube buckling is identical for any values for p,U,€E1, as long as tube and rod dimensions are (top right), with depth variation

held constant. Changing the tube and rod geometry changes the elastic behavior. dU? to start an.d S:tf)P of il
GeometryvA, tube buckling over tim: Geometry B, tube buckling over time: Cy||nder, and Slgnlflca ntly different

/,aqv"\ - SR . - » . Changes in buckling behavior by varyingn from buckling for Constant

velocity 0.4 (top left).
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In general, nonlinear elastic behavior results in loss of pro-
portional relationship between force and velocity.

Mathematical Background » Dimensional analysis predicts that for constant 7, _ _ _ _
f = CpU for constant C. | » Develop elastic-body model for inner cylinder, allowing for

Much work has been done studying fluid flow » In simulations (see figure below) f = Cp U holds prescription of forces rather than velocity.

through passive elastic tubes. [3] true.

» Tube dynamics have been modeled using nonlinear g zﬁ: i has doubled U and halved 44 compared with

shell theory or elastic fiber network models, and > Run 3 has doubled U with 1 held constant » Explore effect on force of axial alignment of cylinder inside
fluid dynamics using lubrication theory and more compared with Run 2 2l oo oo tube.
complex fluid equations. L °

Physical experiment at Leftwich Laboratory?
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» Activate elastic tube with peristaltic contractive forces.
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» Explore effects of variable elastic properties across tube.
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» Non-axisymmetric tube collapse occurs when the
transmural pressure reaches a critically low value.
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» increasing buckling wave number
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» constant or decreasing ratio between max and min
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Rigid inner cylinder (blue) will be translated through elastic tube with fixed ends (red), in boundless Stokes
flow, pictured at simulation start time for one set of tube/rod dimensions.
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