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Motivation

Vaginal delivery is linked to

I shorter post-birth hospital stays

I lower likelihood of intensive care
stays

I lower mortality rates [1]

Fluid mechanics greatly informs the

total mechanics of birth. [2]

I How do the involved fluids
inform the forces on an
infant during birth?

[1] C. S. Buhimschi, I. A. Buhimschi (2006). Advantages of vaginal delivery, Clinical obstetrics and gynecology.
[2] A. M. Lehn, A. Baumer, M. C. Leftwich, An experimental approach to a simplified model of human birth.
Fig. 1: “HumanNewborn” by Ernest F - Own work. Licensed under CC BY-SA 3.0 via Commons - https://
commons.wikimedia.org/wiki/File:HumanNewborn.JPG#/media/File:HumanNewborn.JPG

Fig. 2: “Postpartum baby2” by Tom Adriaenssen - http://www.flickr.com/photos/inferis/110652572/.
Licensed under CC BY-SA 2.0 via Commons - https://commons.wikimedia.org/wiki/File:Postpartum_baby2.
jpg#/media/File:Postpartum_baby2.jpg
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A simplified model

I Rigid acrylic cylinder (fetus)

I Passive elastic latex tube (birth canal)

I Viscous fluid - methyl cellulose and water (amniotic fluid)

I Rigid cylinder is pulled through center of elastic tube at constant velocity



Numerical model: solid behavior

Elastic tube

I Tube modeled by network of
Hookean springs.

I Force at point xl due to spring
from point xm:

g(xl) = τ
(
‖xm−xl‖

∆lm
− 1
)

(xm−xl )
‖xm−xl‖

I τ chosen to match elastic
properties to physical
experiment. [3]

Rigid inner cylinder

I A constant velocity u = U is
specified in the z-direction.

circumference

z

[3] H. Nguyen and L. Fauci (2014). Hydrodynamics of diatom chains and semiflexible fibres, J. R. Soc. Interface.



Numerical model: fluid dynamics

Fluid Behavior is governed by the Stokes equations, with regularized forces at
K discrete points in the system:

0 = −∇p + µ∆u +
∑K

k=0 fkφε(x− xk),∇ · u = 0,

which have solution [4],[5]

u(x) =
1

µ

K∑
k=1

[(fk · ∇)∇Bε(|x− xk |)− fkGε(|x− xk |)] ,

p(x) =
K∑

k=1

[fk · ∇Gε(|x− xk |)] ,

where ∆Bε = Gε,∆Gε = φε(r) = 15ε4

8π(r2+ε2)(7/2) .

Here, µ is viscosity, xk are points on discretized tube and rod, fk is the force at

that point, and ε is a regularization parameter.

[4] R. Cortez (2001). Method of Regularized Stokeslets, SIAM Journal of Scientific Computing.
[5] R. Cortez, L. Fauci, A. Medovikov (2005). The method of regularized Stokeslets in three dimensions: analysis,
validation, and application to helical swimming, Physics of Fluids.



Validation: concentric rigid cylinders

For concentric rigid cylinders of infinite length, with outer tube of radius RT

fixed and inner cylinder of radius RC moving at constant velocity U:

I Velocity profile between cylinders is given by: u(r) = U(ln(Rt )−ln(r))
ln(Rt )−ln(Rc )

I Traction at a point on the side of inner cylinder is: t = µU

Rc ln
(

RT
RC

)
I Compared to numerical results for finite-length concentric rigid cylinders:
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Results: a sample simulation


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Results: a sample simulation


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}




Results: tube buckling
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Results: force on rigid inner cylinder
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Results: force on rigid inner cylinder
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Results: force on rigid inner cylinder
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Future work

I Further analysis of tube buckling behavior
I How does the relationship between inner cylinder velocity and

tube buckling behavior change with the dimensions of the
inner cylinder?

I With variation of elasticity of the tube?

I Increase realism
I active elastic tube / modeling peristalsis
I more accurate geometry

Slides available at
math.tulane.edu/~rpealate

math.tulane.edu/~rpealate
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