
A numerical investigation of a
simplified human birth model

Roseanna Gossmann1∗, Alexa Baumer2,
Lisa Fauci1, Megan C. Leftwich2

Tulane University1, The George Washington University2

Motivation
When compared with Caesarean delivery,
vaginal delivery is linked to
I shorter post-birth hospital stays
I lower likelihood of intensive care stays
I lower mortality rates [1]

Greater understanding of the causes
of force on the infant during childbirth
could decrease the occurrence of unnec-
essary Caesarean deliveries.
Fluid mechanics greatly informs the to-
tal mechanics of birth. [4] We aim to
discover how the involved fluids affect
forces on the infant during birth. Figure 1.

Problem Description
To understand how amniotic fluid informs the forces on the fetus during
birth, a simple physical model was constructed: a rigid cylinder (fetus)
passes through the center of a passive elastic tube (birth canal). The
system is immersed in water mixed with methyl cellulose (amniotic fluid).
Our aim is to calculate the forces on the rigid cylinder and track the
evolution of the geometry of the tube.

Figure 2. Physical experiment set-up at Leftwich
Laboratory2

In the following numerical experiment, matching the physical experiment,
we pull a 13.2cm long rigid rod with diameter 2.54cm through the center
of a 10.8cm long elastic tube with diameter 3.23cm at a constant velocity
of 0.8cm/s.

Mathematical Background
Much work has been done studying fluid flow through elastic tubes with
fixed ends in three dimensions. [3]

I In previous models, tube dynamics have been modeled using nonlinear shell
theory and viscous fluid dynamics using lubrication theory.

I Non-axisymmetric tube collapse occurs when the transmural pressure reaches
a critically low value.

Numerical Methods
Elastic Tube
I Tube modeled by network of Hookean springs.
I Force at xl due to spring from xm:

g(xl) = τ
(
‖xm−xl‖

∆lm
− 1

)
(xm−xl)
‖xm−xl‖

I τ chosen to match elastic properties to physical
experiment. [5]

Rigid Inner Rod
I A constant velocity u is specified in the z-direction.

Fluid governed by the Stokes equations:
0 = −∇p + µ∆u + ∑N

k=1 fk,
∇ · u = 0,

where fk is the total force on the point xk.
The linear relationship between fluid velocities and regu-
larized forces localized at N points is given by

u(x) =
1
µ

N∑
k=1

[(fk · ∇)∇Bε(|x− xk|)

−fkGε(|x− xk|) + ub(x)] ,

p(x) =
N∑

k=1
[fk · ∇Gε(|x− xk|)] ,

where ∆Bε = Gε,∆Gε = φε, φε(r) = 15ε4

8π(r2+ε2)(7/2),
µ =viscosity, ε regularization parameter. [2]

Algorithm
(1) find the velocity induced on the rod by spring forces in the tube,
(2) solve for any additional forces on the rod necessary to achieve its prescribed velocity,
(3) evaluate the velocity and pressure at every point in the system,
(4) update the tube and rod positions using these velocities one step forward in time.

Figure 3. The rod (blue) and tube (red) at times t ≈ 15, 30 s.

Figure 4. Tube, rod, and fluid pressure in cross section.
As the rod exits the tube, the pressure drops and the

tube buckles. Buckling reduces as the pressure inside the
tube rises again.
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Figure 5. Rod is entering tube until ≈ 8s, begins exiting the
tube at ≈ 21s, and is completely out of the tube at ≈ 38s,
after which the pulling force approaches a constant value as

the rod interacts less with the tube.

Tube Buckling

Figure 6. Tube buckles due to pressure drop behind rod, with circumferential wave number 5
reducing to 3, shown from end at various times during simulation.

Discussion
As the rod enters the elastic tube, fluid (and so the tube) is pushed outward. As the pressure
drops immediately behind the rod as it moves, fluid rushes inward, causing non-axisymmetric
tube buckling. The buckling behavior changes with the stiffness of the springs forming the
elastic, the speed of the rod, and the aspect ratio of the rod and tube.

Future Work
I Determine causes of specific buckling behavior of passive elastic tubes.
I Use a continuum elastic model for the tube and compare system behavior.
I Increase realism with better geometry and active peristalsis in the tube.
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