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The Human Birth Problem

Maternal mortality and morbidity in the US [1]

I higher than most other “high-income” countries

I increasing over time

Caesarean delivery

I 32% of all deliveries in the US [2]

I WHO recommends 10-15% [3]

I linked to higher mortality [4] and morbidity [5]
rates

[1] Bulletin of the World Health Organization, 2015
[2] CDC National Center for Health Statistics, 2015
[3] WHO Statement on Caesarean Section Rates, 2015
[4] Buhimschi, Buhimschi, Clinical Obstetrics and Gynecology, 2006
[5] Burrows, Meyn, Weber, Obstetrics&Gynecology, 2004
Fig. 1: “HumanNewborn” by Ernest F - Own work. Licensed under CC BY-SA 3.0 via Commons - https://
commons.wikimedia.org/wiki/File:HumanNewborn.JPG#/media/File:HumanNewborn.JPG

Fig. 2: “Postpartum baby2” by Tom Adriaenssen - http://www.flickr.com/photos/inferis/110652572/.
Licensed under CC BY-SA 2.0 via Commons - https://commons.wikimedia.org/wiki/File:Postpartum_baby2.
jpg#/media/File:Postpartum_baby2.jpg
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Motivation

A better understanding of the mechanics of human birth may
decrease the incidence of unnecessary surgical delivery.



Considering Fluid Dynamics Is Essential

Amniotic fluid is highly variable

I in volume [6]

I in rheological properties [7]

It is unknown how these fluid properties affect the transfer of force from the
uterus onto the baby during delivery.

Fluid dynamics were shown to significantly affect the force necessary for deliv-

ery in a model vacuum-assisted delivery. [8]

[6] Brace, Wolf, American J. of Obstetrics and Gynecology, 1989
[7] Uyeno, J. of Biological Chemistry, 1919
[8] Lehn, Baumer, Leftwich, J. of Biomechanics, 2016



A Simplified Physical Experiment

Schematics courtesy of Alexa Baumer, Leftwich laboratory, The George Washington University



A Simplified Physical Experiment

Physical experiment at Leftwich laboratory, The George Washington University



Spring Network Model of Elastic Tube

I Tube modeled by network of
Hookean springs oriented
tangentially, circumferentially,
and helically.

I Force at point xl due to spring
from point xm:

g(xl) = τ
(
‖xm−xl‖

∆lm
− 1
)

(xm−xl )
‖xm−xl‖

I Total force due to springs at the
points xl is the sum of forces
from 10 to 16 springs connected
to xl .

circumference

length



Spring Network Model of Elastic Tube

Total elastic energy stored in the discrete spring system:

En =
∑

springs

τ

2∆lm
(||xm − xl || −∆lm)2

where τ is the spring constant of every spring, ∆lm is the spring resting length.

Total elastic energy stored in a homogeneous elastic tube:

E =
1

2
Aβ2L

where A = E I is the bending stiffness of the tube, E is the tube’s Young’s
modulus, I is the tube’s second moment of area, β its curvature, and L its
length.

By enforcing En = E for various curvatures β, we can relate individual spring

stiffness to macroscopic elastic energy to choose τ .



Method of Regularized Stokeslets

Stokes equations for regularized forces:

0 = µ∆u−∇p + f0φε(x− x0)

0 = ∇ · u

Solution to regularized Stokes equations:

u(x) =
1

µ
(f0 · ∇)∇Bε− f0Gε

where ∆Gε = φε(x− x0),∆Bε = Gε.

We use the blob function φε = 15ε4

8π(||x−x0||2+ε2)(7/2) . [9]

[9] Cortez, Fauci, Medovikov, Physics of Fluids, 2005



Linearity of Stokes Equations

Since the Stokes equations are linear, for regularized forces at
points xn,

0 = µ∆u−∇p +
∑
n

fnφε(x− xn)

0 = ∇ · u

has solution

u(x) =
∑
n

1

µ
(fn · ∇)∇Bε− fnGε



Algorithm

Using the solution to the regularized Stokes equations u = Af

(1) Calculate spring forces in the tube based on its deformation. Calculate
the velocity they induce on the inner cylinder and fixed tube ends (matrix
multiplication).

(2) Solve for additional forces necessary on inner cylinder and tube ends to
achieve prescribed velocities, using BiCGSTAB iterative method to solve
linear system. [10]

(3) Evaluate the velocity at points on tube (matrix multiplication).

(4) Update the tube and rod positions using these velocities and prescribed
velocities one step forward in time, using Forward Euler time-stepping.

(5) Repeat.

[10] Van der Vorst, SIAM J. Sci. Stat. Comput., 1992



Model Validation and Regularization Parameter Choice

For concentric rigid cylinders of infinite length, with outer tube of radius RT

fixed and inner cylinder of radius RC moving at constant velocity U:

I Velocity profile between cylinders is given by: u(r) = U(ln(Rt )−ln(r))
ln(Rt )−ln(Rc )

I Traction at a point on the side of inner cylinder is: t = µU

Rc ln
(

RT
RC

)
I Compared to numerical results for finite-length concentric rigid cylinders:
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Results
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Results
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Model Modification - Elastic Inner Cylinder

In order to improve two issues

I solving the linear system is computationally expensive

I force input is more realistic for biological applications than prescribed
velocity

we build an elastic spring cylinder, with every point connected to every other
point by a spring with force

gc(xl) = τc

(
‖xm − xl‖

∆lm
− 1

)
(xm − xl)

‖xm − xl‖

and we anchor the tube ends with forces that penalize moving away from their
initial positions

gp(xl) = τp||xm − xl ||(xm − xl)



Model Modification - Elastic Inner Cylinder

Using the solution to the regularized Stokes equations u = Af

(1) Calculate spring forces in the tube and in the inner cylinder based on
their deformation.

(2) Calculate penalty forces on tube ends based on their position.

(3) Add prescribed forces to inner cylinder to “push” it through the tube.

(3) Evaluate the velocity at points on tube and inner cylinder (matrix
multiplication).

(4) Update the tube and rod positions using these velocities and prescribed
velocities one step forward in time, using Forward Euler time-stepping.

(5) Repeat.



Model Modification - Elastic Inner Cylinder

Benefits

I speed

I Method #1: BiCGSTAB + 2[Af] = O(Nn3) flops,
where N = number of iterations to convergence (≈ 100),

n = number of rows in A
I Method #2: [Af] = O(n3) flops, also linear speed-up
I Small sample problem (n = 6396, assume N = 100):

I 1.84× 1014 vs. 2.62× 1011

I any force input



Results



Force Input
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