A simplified human birth model: translation of a rigid cylinder through a passive elastic tube

Roseanna Gossmann^{1*}, Alexa Baumer², Lisa Fauci¹, Megan C. Leftwich² Tulane University **1** , The George Washington University **2**

Motivation

When compared with Caesarean delivery, vaginal delivery is linked to

- I shorter post-birth hospital stays
- I lower likelihood of intensive care stays
- \blacktriangleright lower mortality rates $[1]$

- Rigid acrylic cylinder (fetus) pulled through center of passive elastic tube (birth canal) at set velocity I System immersed in methyl cellulose in water
- (amniotic fluid)

Greater understanding of the causes of force on the infant during childbirth could decrease the occurrence of unnecessary Caesarean deliveries. Fluid mechanics greatly informs the total mechanics of birth. [\[4\]](#page-0-1) We aim to discover how the involved fluids affect forces on the infant during birth.

Experimental Parameters

- \blacktriangleright In previous numerical models, tube dynamics have been modeled using nonlinear shell theory and viscous fluid dynamics using lubrication theory.
- I Non-axisymmetric tube collapse occurs when the transmural pressure reaches a critically low value.
- **I** Tube modeled by network of Hookean springs.
- **I** Force at **x**^{*l*} due to spring from **x**_{*m*}: $g(x_l) = \tau$ $\left($ <u>**km**−**xl**</u> **∆lm − 1 (xm−xl)** $\|$ **x**_m−**x**_l $\|$
- I *τ* chosen to match elastic properties to physical experiment. [\[5\]](#page-0-3)

- A constant velocity U is specified in the **z**-direction.
- **Fluid** governed by the Stokes equations:

Rigid inner cylinder radius $R_C = 1.27, 1.11125, 0.9525$ cm Rigid inner cylinder length $L_c = 6.6, 13.2$ cm I Velocity of inner cylinder $U = 0.4, 0.8, 1.6, 3.2$ cm/s

Mathematical Background

- (1) find velocity induced on the rod by spring forces,
- (2)solve for additional forces necessary for prescribed velocity,
- (3) evaluate velocity and pressure throughout system,
- (4) update tube and cylinder positions one time-step,
- (5) repeat.

Much work has been done studying fluid flow through elastic tubes with fixed ends in three dimensions. [\[3\]](#page-0-2)

 $R_C = 0.9525, L_C = 13.2, U = 0.4$ cm/s: As the rigid inner cylinder moves through the elastic tube, with tube ends remaining fixed in space, the tube buckles behind the trailing end of the cylinder as the fluid pressure drops.

Numerical Methods

Elastic tube

Rigid inner cylinder

$$
0=-\nabla p+\mu\Delta u+\sum_{k=1}^N f_k,
$$

$$
\nabla\cdot u=0,
$$

$$
u(x) = \frac{1}{\mu} \frac{x}{k}
$$

$$
-f_k G_k
$$

$$
p(x) = \sum_{k=1}^{N} x_k
$$

Algorithm

Simulation Results

Tube, rod, and fluid pressure in cross section.

Fig.1: "HumanNewborn" by Ernest F - Own work. Licensed under CC BY-SA 3.0 via Commons <https://commons.wikimedia.org/wiki/File:HumanNewborn.JPG#/media/File:HumanNewborn.JPG>, "Postpartum baby2" by Tom Adriaenssen - <http://www.flickr.com/photos/inferis/110652572/>. Licensed under CC BY-SA 2.0 via Commons https://commons.wikimedia.org/wiki/File:Postpartum_baby2.jpg#/media/File:Postpartum_baby2.jpg

A range of buckling behavior exhibited for differing cylinder geometry and velocity.

Pulling Force and Tube Buckling

The relationship between maximum pulling force and buckling behavior is considered. Four-fold buckling occurred for forces ranging from 100 to 515 kg**·**cm/s **2** , six-fold buckling for forces 50 to 200, and eight-fold buckling for a force of 780.

I Determine causal relationship between force and other variables and specific buckling behavior of the elastic tube. \blacktriangleright Use a continuum elastic model for the tube and compare system behavior; consider nonzero Reynolds numbers. Increase realism with better geometry and active peristalsis in

R. C. S. Buhimschi, I. A. Buhimschi, Advantages of vaginal delivery, Clinical obstetrics and gynecology 49 (1) (2006) 167-183. R. Cortez, L. Fauci, A. Medovikov, The method of regularized Stokeslets in three dimensions: analysis, validation, and application to

J. B. Grotberg and O. E. Jensen, Biofluid mechanics in flexible tubes, Annual Review of Fluid Mechanics (2004) 36:121-47. A. M. Lehn, A. Baumer, M. C. Leftwich, An experimental approach to a simplified model of human birth, J Biomech. (2016). H. Nguyen and L. Fauci, Hydrodynamics of diatom chains and semiflexible fibres, J. R. Soc. Interface 11: 20140314 (2014).

Force and Velocity

Greater force is necessary to move cylinders of greater width at the same velocity through the tube (left). Force approximately doubles as velocity doubles for the same cylinder geometry, as expected due to linearity of the Stokes equations (right).

Future Work

-
-
- the tube.

References

-
- helical swimming, Physics of Fluids (2005).
-
-
-
-