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Part I

Applied Mathematics 1

1 Dimensional Analysis

Dimensions of Common Physical Quantities

[L] Length L
[M ] Mass M
[T ] Time T
[v] Velocity LT−1

[a] Acceleration LT−2

[F ] Force MLT−2

[ρ] Mass density ML−3

[p] Pressure ML−1T−2

[E] Energy ML2T−2

Buckingham Pi Theorem

When a complete relationship between dimensional physical quantities is expressed in di-
mensionless form, the number of independent quantities that appear in it is reduced from the
original n to n−k, where k is the maximum number of the original n that are dimensionally
independent.

Step 1: Identify a complete set of relevant physically independent variables Q1, Q2, · · · , Qn,
and their dimensions.
Step 2: Identify a complete, dimensionally independent subsetQ1, · · · , Qk whereQk+1, · · · , Qn

have dimensions that can be expressed as products of powers of the dimensions of the first
k variables.
Step 3: Find n− k dimensionless quantities by solving matrix equations as shown in exam-
ples to follow.
Step 4: Each dimensionless quantity can be written as a function of the others.

Examples

See Homework 2
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Exam Problems

Problem 1. Consider the force, F , of the wind (with density ρ, traveling at speed v, and
absolute/dynamic viscosity µ) blowing against a barge. Suppose that the barge has length
l, height h, and width w. Use the labels M for mass, L for length, T for time. For example,
the viscosity has dimensions [µ] = ML−1T−1.

(a) What are the dimensionless variables. State and apply the Buckingham Pi theorem to
determine how the force of the wind on the barge depends upon the wind velocity.

(b) Suppose that the barge is five times longer than it is wide, l = 5w, and ten times longer
than it is high, l = 10h. What is the difference in the force of the wind on the front
versus the side of the barge.

Solution.
(a)
We consider the following variables with their corresponding physical dimensions:

[F ] = MLT−2, [ρ] = ML−3, [v] = LT−1, [µ] = ML−1T−1, [A] = L2

(A denotes area, other variables are as in the problem description above).
In order to find all dimensionless quantities we solve for the null space of the following ma-
trix:

A ρ µ v F
L 2 -3 -1 1 1
M 0 1 1 0 1
T 0 0 -1 -1 -2

We find that the null space is spanned by the vectors (−1/2, 0,−1,−1, 1)T and (1/2, 1,−1, 1, 0)T .
Thus, a complete and independent set of dimensionless quantities is,

Π1 =
F

vµ
√
A
,

Π2 =

√
Aρv

µ
.

Theorem (Buckingham Pi Theorem). Suppose that we have a relationship between a quan-
tity a which is being determined in some experiment, and a set of quantities (a1, . . . , an)
which are under experimental control, which is of the form,

a = f(a1, . . . , ak, ak+1, . . . , an),

where a1, . . . , ak have independent physical dimensions. Then there is a function Φ such that
the above equation can be rewritten as,

a

ap11 · · · a
pk
k

= Φ(Π1, . . . ,Πn−k),

where Π1, . . . ,Πn−k and a
a
p1
1 ···a

pk
k

are dimensionless quantities.
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Now we want to apply the Buckingham’s Pi theorem to determine how the force of the
wind on the barge depends upon the wind velocity. We assume that F can be written as
a function of ρ, v, µ and A. We notice that Π2 is the Reynold’s number, Re = Π2. Let
Π∗ := Π1/Π2 = F

ρAv2
. Then Re and Π∗ are independent dimensionless quantities, and we

can apply Buckingham’s Pi Theorem. Thus, there is a function Φ such that Π∗ = Φ(Re),
and consequently,

F = Φ(Re)ρAv2.

It can be shown experimentally that Φ is approximately constant if 102 < Re < 105, see [?].
Thus, if 102 < Re < 105, then it holds that

F = CρAv2,

for a suitable constant C.
(b)
For simplicity, we assume that all sides of the barge have rectangular shape. Then the area
on the front is Afront = wh, and the are on the side is Aside = lh = 5wh = 5Afront. Thus,
by part (a), the difference in the force of the wind on the front versus the side of the barge
is given by (if 102 < Re < 105),

Ffront − Fside = CρAfrontv
2 − CρAsidev2 = −4Cρv2Afront = −4Cρv2wh.

By assumption, we have w = 1
5
l and h = 1

10
l. Thus,the difference in the force of the wind on

the front versus the side of the barge is given by (if 102 < Re < 105),

Ffront − Fside = −4Cρv2wh = − 1

12
Cρv2l2.

Problem 2. The most common variables in fluid dynamics include:

l = characteristic length scale of the problem

u = velocity of flow

ρ = density of fluid

∆p = pressure drop

g = gravity

µ = absolute/dynamic viscosity

(a) Create as many independent dimensionless numbers as you can for these variables.
Often the form of the dimensionless numbers derived by algebraic calculations us-
ing the Buckingham Pi Theorem, or the Rayleigh method, can obscure the physi-
cal meaning of the number. For example, the Reynolds number using this approach
would appear as π1 = Re = ρul/µ. This form hides the physical meaning of Re
as the ratio of the internal forces (ρu2) to the viscous forces (µu/l). That is, Re =
(internal forces)/(viscous forces) = (ρu2)/(µu/L) = ρul/µ
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(b) Identify at least five standard (well known) dimensionless numbers (e.g. see http:

//en.wikipedia.org/wiki/Dimensionless_quantity ) that are equivalent to your
dimensionless variables. If possible, rewrite your dimensionless numbers so they have
a physical meaning, as we did above for the Reynold’s number. That is, once you have
found the standard dimensionless number that your formula corresponds to, research
the physical meaning of that parameter and describe what it means.
Remark: Combinations of dimensionless numbers are also dimensionless numbers. A
specific combination of common dimensionless number is often the most appropriate
parameter to understand the behavior of a physical system.

Solution.
(a)
The corresponding physical dimensions of the given variables are

[g] = LT−2, [ρ] = ML−3, [u] = LT−1, [µ] = ML−1T−1, [l] = L, [∆p] = ML−1T−2.

In order to find dimensionless quantities we solve for the null space of the following matrix:
l u ρ ∆p g µ

L 1 1 -3 -1 1 -1
T 0 -1 0 -2 -2 -1
M 0 0 1 1 0 1

We find that the null space is spanned by the vectors (−1,−1,−1, 0, 0, 1)T , (0,−2,−1, 1, 0, 0)T

and (1,−2, 0, 0, 1, 0)T . Thus, a complete and independent set of dimensionless quantities is,

Π1 =
µ

luρ
,

Π2 =
∆p

u2ρ
,

Π3 =
lg

u2
.

(b)
We identify five standard (well known) dimensionless numbers that are equivalent to the
dimensionless variables found in part (a).

• The Richardson number Ri = gl
u2

= Π3 is the dimensionless number that expresses the
ratio of potential to kinetic energy, i.e.

Π3 = Ri =
potential energy

kinetic energy
=
mgl

mu2
=
gl

u2
.

• The Euler number Eu = ∆p
ρu2

= Π2 “is a dimensionless number used in fluid flow
calculations. It expresses the relationship between a local pressure drop e.g. over
a restriction and the kinetic energy per volume, and is used to characterize losses
in the flow, where a perfect frictionless flow corresponds to an Euler number of 1”
(http://en.wikipedia.org/wiki/Euler_number_%28physics%29).
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• The Froude number Fr = u√
lg

=
√

Π−1
3 . “In fluid mechanics, the Froude number is used

to determine the resistance of a partially submerged object moving through water, and
permits the comparison of objects of different sizes.” (http://en.wikipedia.org/
wiki/Froude_number)

• The Archimedes number Ar = gl3ρl(ρ−ρl)
µ2

= Π3/Π
2
1 “is used to determine the motion

of fluids due to density differences.” (http://en.wikipedia.org/wiki/Archimedes_
number)

• The Dean number D = ρV l
µ

(
l

2R

)1/2
= Π−1

1 ·
(
l

2R

)1/2
“appears in the so-called Dean Equa-

tions. These are an approximation to the full NavierStokes equations for the steady ax-
ially uniform flow of a Newtonian fluid in a toroidal pipe, obtained by retaining just the
leading order curvature effects.” (http://en.wikipedia.org/wiki/Dean_number)
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2 Phase Plane Analysis

Drawing the Phase Plane

Given (ẋ, ẏ) = (f(x), g(y)) at each point (x, y), we can draw a vector field on the xy-plane.
Plot the nullclines, where ẋ = ẏ = 0 and locate the fixed points at their intersections. Along
the nullclines, flow is vertical or horizontal.
Different trajectories never intersect, as a unique solution to the system is determined entirely
by the initial value.

Poincaré Bendixson Theorem

If a trajectory is confined to a closed, bounded region, and there are no fixed points in the
region, then the trajectory must eventually approach a closed orbit.

Classification of Fixed Points

We can write a linear system in the form ẋ = Ax. Fixed points occur where
ẋ = 0. We can classify the behavior at the fixed points by looking at the eigenvalues of A,
or, often more simply, by looking at the eigenvalues of the Jacobian matrix at each fixed
point.

λ1 < λ2 < 0 =⇒ stable node

λ1 > λ2 > 0 =⇒ unstable node

λ1 < 0 < λ2 =⇒ saddle point

λ = −α± iβ =⇒ stable spiral point

λ = α± iβ =⇒ unstable spiral point

λ = ±iω =⇒ elliptic point/center

Types of stability:
Attracting - all trajectories that start near x go to x in time
Liapunov stability - all trajectories that start near x remain near x
Neutrally stable - Liapunov stable but not attracting
(Asymptotically) stable - Liapunov stable and attracting
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Linearization to Approximate Phase Plane Near Fixed Points

If (x∗, y∗) is a fixed point of the system ẋ = f(x, y), ẏ = g(x, y), let (u, v) = (δx, δy) =
(x− x∗, y − y∗). Obtain the linearized system(

u̇
v̇

)
=

(
∂f
∂x

(x∗, y∗) ∂f
∂y

(x∗, y∗)
∂g
∂x

(x∗, y∗) ∂g
∂y

(x∗, y∗)

)(
u
v

)
The behavior at the fixed point of this new system is the same as in the original system.

Examples

See Homeworks 3,4, and 5.

Exam Problem

Problem 3 (Phase Plane Analysis). Consider the system of ordinary differential equations

ẋ = x− 2yxa,

ẏ = −y + xy

that describe a predator-prey system, where x and y are the fractions of the population that
are preys or predators. The value a determines how easily the prey x can be captured (and
eaten). Consider the cases a = 0.5, enter a = 1, and a = 2.

(a) Find the equilibrium points for the solution,

(b) define the linearized stability equations for perturbations about these equilibrium
points, and

(c) analyze their stability by solving for the eigenvalues. If the solution spirals around one
of the fix points, then (3d) describe how your can determine the direction of the spiral.

(d) Draw (e.g. pplane.m) the nullclines and the phase plane for the solution and

(e) indicate (classify) the type of each of the equilibrium points.

Solution.
We consider the case a = 0.5.
We solve the given equation for fixed points by setting ẋ = 0 = ẏ. The fixed points are
(x, y) = (0, 0) and (x, y) = (1, 1/2).
We analyze the stability of the fixed points, by looking at the evolution of a small displace-
ment (δx, δy) about each fixed point.
A linearization of the given equation about (x, y) = (0, 0) yields,

d

dt

(
δx
δy

)
=

(
1 0
0 −1

)(
δx
δy

)
.
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Obviously, the corresponding eigenvalues are λ1 = 1 and λ2 = −1. Thus, the fixed point
(x, y) = (0, 0) is a hyperbolic point.
A linearization of the given equation about (x, y) = (1, 1/2) yields,

d

dt

(
δx
δy

)
=

(
1/2 −2
1/2 0

)(
δx
δy

)
. (1)

The corresponding characteristic polynomial is z 7→ z2 − 1/2z + 1, and consequently the
corresponding eigenvalues are,

λ1 =
1

4
+

√
3.75

2
i ≈ 1

4
+ 0.968246i,

λ2 =
1

4
−
√

3.75

2
i ≈ 1

4
− 0.968246i.

Thus, (x, y) = (1, 1/2) is an unstable spiral point.
In order to determine the direction of the spiral, we set δy = 0 and δx > 0 in the linearization
(1). Then we obtain δ̇y = x

2
> 0, which implies that y is increasing when y is close to the

x-axis and x > 0. That is, the motion on the right half-plane is upward, and consequently,
the motion of the spiral is anticlockwise.
The phase plane with the nullclines for the solution is shown in figure 1.
Analogously, we see that if a = 1 then there is a hyperbolic saddle at (0, 0) and an elliptic
point at (1, 1/2), see figure 2.
By the same methods, if a = 2 then there is a hyperbolic saddle at (0, 0) and a stable spiral
point at (1, 1/2), see figure 3.

x ’ = x − 2 y xa

y ’ = − y + x y  
a = 0.5
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Figure 1: Phase plot of the solution to the ODE of problem 3 with a = 0.5. The fixed points
are a hyperbolic saddle at (0, 0) and an unstable spiral point at (1, 1/2). The nullclines are
shown as pink and orange lines.

Problem 4 (Nonlinear Pendulum). (a) Write the second order differential equation

θ′′ + λcos(θ)θ′ + ω2sin(θ) = 0
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x ’ = x − 2 y xa

y ’ = − y + x y  
a = 1
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Figure 2: Phase plot of the solution to the ODE of problem 3 with a = 1. The fixed points
are a hyperbolic saddle at (0, 0) and an elliptic point at (1, 1/2). The nullclines are shown
as pink and orange lines.

x ’ = x − 2 y xa

y ’ = − y + x y  
a = 2
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Figure 3: Phase plot of the solution to the ODE of problem 3 with a = 2. The fixed points
are a hyperbolic saddle at (0, 0) and a stable spiral point at (1, 1/2). The nullclines are
shown as pink and orange lines.
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as a first order system of equations. Define the frequency as ω = 1, and consider three
cases for the friction factor, λ: λ = 0.1, λ = 0, and λ = −0.1.

(b) Analyze the stability of the equilibrium points (0, 0) and (π, 0).

(c) Use the phase plane of the solution to describe the difference in the dynamics of the
solution as λ changes sign.

Solution.
(a)
We write the given differential equation as a system of two first order differential equations
as follows, {

θ′ = ξ,

ξ′ = −λξ cos θ − ω2 sin θ.
(2)

(b)
Setting θ′ = 0 = ξ′ we get that the fixed points are (θ, ξ) = (kπ, 0) for all k ∈ Z.
We analyze the stability of the fixed points (0, 0) and (π, 0), by looking at the evolution of
a small displacement (δθ, δξ) about each fixed point.
If (θ, ξ) = (0, 0) then the linearization yields,

d

dt

(
δθ
δξ

)
=

(
0 1
−1 −λ

)(
δθ
δξ

)
. (3)

The corresponding characteristic polynomial is z 7→ z2 +λz+ 1. We consider three cases for
the parameter λ.

λ = 0.1 In this case the eigenvalues are −0.0500 ± 0.09987i (approximately, i.e. with the
precision of four digits after the decimal dot). Thus, (0, 0) is a stable spiral point.
Figure 4 shows a plot of the corresponding phase space.

λ = 0 In this case the eigenvalues are ±i (approximately, i.e. with the precision of four digits
after the decimal dot). Thus, (0, 0) is an elliptic point. Figure 5 shows a plot of the
corresponding phase space.

λ = −0.1 In this case the eigenvalues are 0.0500 ± 0.09987i (approximately, i.e. with the
precision of four digits after the decimal dot). Thus, (0, 0) is an unstable spiral point.
Figure 6 shows a plot of the corresponding phase space.

If (θ, ξ) = (π, 0) then the linearization yields,

d

dt

(
δθ
δξ

)
=

(
0 1
1 λ

)(
δθ
δξ

)
. (4)

The corresponding characteristic polynomial is z 7→ z2−λz− 1. We consider three cases for
the parameter λ.
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λ = 0.1 In this case the eigenvalues are 1.0512 and −0.9512 (approximately, i.e. with the
precision of four digits after the decimal dot). Thus, (π, 0) is a hyperbolic point. Figure
4 shows a plot of the corresponding phase space.

λ = 0 In this case the eigenvalues are ±1. Thus, (π, 0) is a hyperbolic point. Figure 5 shows
a plot of the corresponding phase space.

λ = −0.1 In this case the eigenvalues are −1.0512 and 0.9512 (approximately, i.e. with the
precision of four digits after the decimal dot). Thus, (π, 0) is a hyperbolic point. Figure
6 shows a plot of the corresponding phase space.

x ’ = y                         
y ’ = − lambda y cos(x) − sin(x)

lambda = 0.1
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Figure 4: Phase plane of the solution of the ODE given in problem 4 with λ = 0.1. The
fixed point (π, 0) is a hyperbolic point. The fixed point (0, 0) is a stable spiral point.

x ’ = y                         
y ’ = − lambda y cos(x) − sin(x)

lambda = 0
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Figure 5: Phase plane of the solution of the ODE given in problem 4 with λ = 0. The fixed
point (π, 0) is a hyperbolic point. The fixed point (0, 0) is an elliptic point.

(c)
From figures 4, 5 and 6 we conclude that, as λ changes sign from positive to negative, the
fixed point (0, 0) changes from a stable spiral point (λ > 0) first to an elliptic point (λ = 0)
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x ’ = y                         
y ’ = − lambda y cos(x) − sin(x)

lambda = − 0.1
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Figure 6: Phase plane of the solution of the ODE given in problem 4 with λ = −0.1. The
fixed point (π, 0) is a hyperbolic point. The fixed point (0, 0) is a unstable spiral point.

and then to an unstable spiral point(λ < 0). The same is true for all fixed points of the form
(kπ, 0) with an even k.
The fixed point (π, 0) is a hyperbolic point independent of the sign of λ. The same is true
for all fixed points of the form (kπ, 0) with an odd k.
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3 Asymptotic Approximations / Perturbation Theory

Asymptotic Approximations

Definitions

Order symbols:

f = O(φ) ⇐⇒ lim
ε→ε0

f(ε)

φ(ε)
= L

f = o(φ) ⇐⇒ lim
ε→ε0

f(ε)

φ(ε)
= 0

If f = φ+ o(φ), then φ(ε) is an asymptotic approximation to f(ε) as ε ↓ ε0.
A sequence of functions φm(ε) is well-ordered as ε ↓ ε0 iff φm+1 = o(φm) as ε ↓ ε0 for all m.
To find asymptotic expansions for a function f(ε), use Taylor’s theorem.

Examples

HW 7,8,9

Exam Problems

Problem 5 (Well-Ordered Asymptotic Approximations). (a) Define what it means for a se-
quence to be well-ordered.

(b) Arrange the following sequences so they are well-ordered for small ε > 0: φ1 =
1

ln(ε)
, φ2 = 1

ε
sin(ε3), φ3 = e−ε, φ4 = ε ln(ε), φ5 = ε, φ6 = ε5e−3/ε

(c) Arrange the following sequences so they are well-ordered for small ε > 0: φ1 = 1 + ε+
ε2

2
− eε, φ2 = eε, φ3 = eε − 1, φ4 = 1 + ε− eε

Solution.
(a)
The functions f1(ε), f2(ε), . . . are well ordered as ε ↓ 0 if and only if fm+1 = o(fm) as ε ↓ 0
for all m.
(b)
In the following we use the l’Hospital’s Rule for some steps.

• limε↓0

∣∣∣φ6φ2 ∣∣∣ = limε↓0

∣∣∣ ε5e−3/ε

1
ε

sin(ε3)

∣∣∣ = limε↓0

∣∣∣ ε6e−3/ε

sin(ε3)

∣∣∣ ≤ limε↓0

∣∣∣ ε6

sin(ε3)

∣∣∣ = limε↓0

∣∣∣ 6ε5

cos(ε3)3ε2

∣∣∣ = 0

⇒ φ6 = o(φ2).

14



• limε↓0
φ2
φ5

= limε↓0
1
ε

sin(ε3)

ε
= limε↓0

sin(ε3)
ε2

= limε↓0
cos(ε3)3ε2

2ε
= limε↓0

cos(ε3)3ε
2

= 0

⇒ φ2 = o(φ5).

• limε↓0
φ5
φ4

= limε↓0
ε

ε ln(ε)
= 0 ⇒ φ5 = o(φ4).

• limε↓0
φ4
φ1

= limε↓0
ε ln(ε)

1
ln(ε)

= limε↓0
(ln ε)2

1/ε
= limε↓0

2 ln ε 1
ε

−1/ε2
= limε↓0

2 ln ε
−1/ε

= limε↓0
2(1/ε)
1/ε2

=

limε↓0
2

1/ε
= 0

⇒ φ4 = o(φ1).

• limε↓0
φ1
φ3

= limε↓0
1

ln(ε)

e−ε
= limε↓0

1
ln(ε)

= 0 ⇒ φ1 = o(φ3).

From the above, it follows that the arragement of the given sequence such that it is well
ordered is given by

φ6 << φ2 << φ5 << φ4 << φ1 << φ3.

(c)
In the following we use the l’Hospital’s Rule for some steps.

• limε↓0
φ1
φ4

= limε↓0
1+ε+ ε2

2
−eε

1+ε−eε = limε↓0
1+ε−eε

1−eε = limε↓0
1−eε
−eε = 0 ⇒ φ1 = o(φ4).

• limε↓0
φ4
φ3

= limε↓0
1+ε−eε
eε−1

= limε↓0
1−eε
eε

= 0 ⇒ φ4 = o(φ3).

• limε↓0
φ3
φ2

= limε↓0
eε−1
eε

= 0 ⇒ φ3 = o(φ2).

From the above, it follows that the arragement of the given sequence such that it is well
ordered is given by

φ1 << φ4 << φ3 << φ2.

Problem 6 (Asymptotic Approximations). Find the two-term expansion for the solution of
the equations as a function of 0 < ε << 1.

(a) x2 + ε
√

3 + x2 − εsin(x) = cos(ε)

(b) ε2x3 − x+ ε = 0

Solution.
(a)
We assume that the asymptotic approximation of each root of the given equation can be
written as,

x = x0 + εx1.

Plugging it into the given equation yields,

x2
0 + 2x0x1ε+ . . .+ ε

√
3 + x2

0 + . . . = 1 + . . . .
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The O(1) equation is given by,
x2

0 = 1,

and consequently, x0 = ±1.
The O(ε) equation is given by,

2x0x1 +
√

3 + x2
0 = 0.

Therefore, x1 = −
√

3+x20
2x0

, where x0 = ±1.
Thus, the asymptotic two-term expansions of the two roots of the given equation are,

x = 1− ε and x = −1 + ε.

(b)
We want to find the two term asymptotic expansion, for small ε, of each root of the given
equation. If ε = 0 then the given equation has only one roots, at x = 0. The other roots
wander off to ±∞ as ε ↓ 0. Thus, we distinguish two cases,

x = εx1 + ε2x2 + ε3x3 + ε4x4 + ε5x5 + . . . , (5)

x = εγ(x0 + εαx1). (6)

Plugging equation (5) into the given problem, we get,

ε2(ε3x3
1 + . . .)− εx1 − ε2x2 − ε3x3 − ε4x4 − ε5x5 + ε = 0.

Clearly, the O(ε2), O(ε3) and O(ε4) equations yield that x2 = x3 = x4 = 0. The O(ε)
equation is given by−x1+1 = 0, and consequently, x1 = 1. The O(ε5) equation is x3

1−x5 = 0,
and consequently, x5 = 1. Thus, we found the asymptotic expansion of one root to be,
x = ε+ ε5.
Now, plugging equation (6) into the given problem, we get,

ε2+3γ(x0 + εαx1)3 − εγx0 − εα+γx1 + ε = 0.

By a short case distinction, we see that γ = −1 and α = 2. Thus, the above equation
becomes,

ε−1(x3
0 + 3x2

0x1ε
2 + . . .)− ε−1x0 − εx1 + ε = 0.

The O(ε−1) equation is x3
0−x0 = 0, and consequently x0 = 0 or x0 = ±1. But taking x0 = 0

we arrive at the previous solution.
The O(ε) equation is given by 3x2

0x1 − x1 + 1 = 0. Plugging in x0 = ±1, it follows that
x1 = −1

2
.

Thus, we have found the asymptotic two-term expansions of the three roots of the given
equation to be,

x = ε+ ε5 and x = ±ε−1 − 1

2
ε.
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Singular Perturbation Problems with Boundary Layers

General Procedure

Step 1: Outer Solution

• Given a boundary value problem, assume that the solution can be expanded in powers
of ε:

y(x) ∼ y0(x) + εy1(x) + · · ·

• Substitute this approximation into the BVP equation.

• The general (outer) solution is found by solving the ODE made up of O(1) terms.
Constants can be found by matching to one or the other given boundary conditions
(unless boundary layers occur at both boundaries).

Step 2: Boundary Layer/“Inner Solution”

• Introduce a boundary-layer coordinate:
For a boundary layer at x = x0, we let the boundary-layer coordinate be x̄ = x−x0

εα
.

• Perform a change of variables to rewrite the BVP in terms of the variable x̄.

• Assume that the boundary-layer solution can be expanded as

Y (x̄) ∼ Y0(x̄) + εαY1(x̄) + · · ·

• Substitute this approximation into the BVP(x̄).

• We determine the value for α by matching the orders of terms in the BVP, while
maintaining the order of the original equation, i.e., if the first term is << the second
term in the original problem, we maintain that the first term is << the second term
in the boundary-layer problem BVP(x̄).

• Solve the ODE made up of O( 1
εα

) terms. This gives the general inner solution, in the
immediate vicinity of x0. Constants will be determined during Step 3.

Step 3: Matching

• Choose a new variable η = x
εβ

, where 0 < β < α.

• Require for fixed η that
lim
ε→0+

y(ηεβ) = lim
ε→0+

Y (ηεβ).

This will allow us to solve for any constants in the inner solution equation.

Step 4: Composite Expansion

• The uniform approximation is given by

yu(x) = y(x) + Y (x)− lim
ε→0+

y(ηεβ).

17



Examples

HW 10,11

Exam Problems

Problem 7 (Singular Perturbation Problem). Using singular perturbation methods, find a
uniform approximate solution for the boundary value problem

εy′′ + y′ − 2x = 0, y(0) = y(1) = 1, 0 < ε << 1.

Describe, in words, what would change if −1 << ε < 0?

Solution.
We suspect that there is boundary layer at the left end of the interval [0, 1]. Then the outer
solution fullfils the equation y′ − 2x = 0 with boundary condition y(1) = 1. Thus the outer
solution is given by,

yO = x2. (7)

In order to find the inner solution we define, ξ := x
δ(ε)

and Y (ξ) := y(ξδ(ε)). Then the ODE
becomes,

ε

δ(ε)2
Y ′′ +

1

δ(ε)
Y ′ − 2ξδ(ε) = 0.

It follows that δ(ε) = ε, and the problem that we need to solve is given by,

Y ′′ + Y ′ = 0, Y (0) = 1.

Thus, Y ′ + Y = const, and by separation of variables it follows that∫
1

const− Y
dY =

∫
1dξ

− log(const− Y ) = ξ + const

1

const− Y
= const · eξ

Y = c1 + c2e
−ξ,

where c1 and c2 are constants to be determined. From the boundary condition we get that
c2 = 1− c1, i.e. Y = c1 + (1− c1)e−ξ.
The matching condition states that

0 = lim
x→0

yO(x) = lim
ξ→∞

Y (ξ) = c1. (8)

Hence, the inner solution is given by,

yI = e−
x
ε . (9)

18



From equations (7), (9) and (8) it follows that the composite solution is given by,

y = yO + yI − lim
x→0

yO(x)

= x2 + e−
x
ε .

We check the found approximate solution for correctness by plotting it together with the
numerical solution, see figure 7. We see that the approximation is very good for small ε > 0.
If −1 << ε < 0, then the sign in front of x/ε in the approximate solution would change from

0 0.5 1
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0.5

1

1.5

ε=0.1

0 0.5 1
0.8

1

1.2
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0.4
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1
ε=0.01
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0.8
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Figure 7: The numerical solution (solid line) and the asymptotic approximation of the exact
solution (dashed line) for the boundary value problem 9.

− to +, i.e. we would get y = x2 + e+x
ε .

Problem 8 (Singular Perturbation Problem). Find the composite expansion for the solution
of

εy′′ + y3 + 2y′ = 0, y(0) = 0, y(1) =
1

3
, 0 < ε << 1.

Solution.
The outer solution solves the equation y3

O + 2y′O = 0. By separation of variables it follows
that ∫

− 2

y3
O

dyO =

∫
1dx

(−2)

(
−1

2
y−2
O

)
= x+ c

y−1
O = ±

√
x+ c

yO = ± 1√
x+ c

.

We suspect that there is a boundary layer at the left end of the interval [0, 1]. Thus, we
require that yO(1) = 1

3
, or equivalently, ± 1√

1+c
= 1

3
. Hence, the outer solution is given by,

yO =
1√
x+ 8

. (10)
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In order to find the inner solution we define, ξ := x
δ(ε)

and Y (ξ) := y(ξδ(ε)). Then the ODE
becomes,

ε

δ(ε)2
Y ′′ + Y 3 +

2

δ(ε)
Y ′ = 0.

It follows that δ(ε) = ε, and the problem that we need to solve is given by,

Y ′′ + 2Y ′ = 0, Y (0) = 0.

Thus, Y ′+ 2Y = c′1 (c′1 is a suitable constant), and by separation of variables it follows that∫
1

c′1 − 2Y
dY =

∫
1dξ(

−1

2

)
log(c′1 − 2Y ) = ξ + const

(c′1 − 2Y )−1/2 = const · eξ

(c′1 − 2Y )−1 = const · e2ξ

c′1 − 2Y =
1

const · e2ξ

Y = c1 + c2e
−2ξ,

where c1 and c2 are constants to be determined. By the boundary condition, Y (0) = 0, it
follows that c1 = −c2, i.e. Y = c1(1− e−2ξ).
The matching condition states that

1√
8

= lim
x→0

yO(x) = lim
ξ→∞

Y (ξ) = c1. (11)

Hence, the inner solution is given by,

yI =
1√
8

(1− e−2x
ε ). (12)

From equations (10), (12) and (11) it follows that the composite solution is given by,

y = yO + yI − lim
x→0

yO(x)

=
1√
x+ 8

− e−2x
ε

√
8
.

We check the found approximate solution for correctness by plotting it together with the
numerical solution, see figure 8. We see that the approximation is very good for small ε > 0.
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Figure 8: The numerical solution (solid line) and the asymptotic approximation of the exact
solution (dashed line) for the boundary value problem 10.
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4 Fourier Analysis

Fourier Transform

Convolution (u ∗ v)(x) =
∫
R u(x− y)v(y)dy =

∫
R u(y)v(x− y)dy.

Fourier Transform û(ξ) =
∫
R e
−iξxu(x)dx.

Inverse Fourier Transform u(x) = 1
2π

∫
R e

iξxû(ξ)dξ.

Some Properties of the Fourier Transform :

• Parseval’s equality: ‖û‖ =
√

2π‖u‖.
• û ∗ v(ξ) = û(ξ)v̂(ξ).

• û+ v(ξ) = û(ξ) + v̂(ξ), ĉu(ξ) = cû(ξ).

• (̂ux)(ξ) = iξû(ξ).

Solving a PDE with Fourier Analysis

Steps to solve a PDE of the form ut = Au+Bux+Cuxx+. . .+Nux...x, where x ∈ [−L/2, L/2].

(a) By the IFT,

1

2π

∫
R
eiξx

∂

∂t
û(ξ, t)dξ = ut = Au+Bux + Cuxx + . . .+Nux...x

=
1

2π

∫
R
eiξx(Aû(ξ, t) + iξBû(ξ, t) + (iξ)2Cû(ξ, t) + . . .+ (iξ)nNû(ξ, t))dξ.

(b) Removing the
∫

-symbols yields the ODE,

∂

∂t
û(ξ, t) = (A+ iξB + (iξ)2C + . . .+ (iξ)nN)û(ξ, t).

(c) The solution of the ODE is given by,

û(ξ, t) = e(A+iξB+(iξ)2C+...+(iξ)nN)tû(ξ, 0).

(d) By the IFT,

u(x, t) =
1

2π

∫
R
eiξ(x+Bt+...)et(A−ξ

2C+...)û(ξ, 0)dξ.

(e) Assume that u(x, 0) =
∑∞

k=0 ak cos(kx) + bk sin(kx), then

u(x, t) =
∞∑
k=0

e
t
(
A−( 2π

L
k)

2
C+...

) [
ak cos

(
2π

L
k(x+Bt+ . . .)

)
+ bk sin

(
2π

L
k(x+Bt+ . . .)

)]
.
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Discrete Fourier Transform

Definition (DFT& IDFT). For k ∈
{
−N

2
+ 1, . . . , N

2

}
the DFT is a sequence defined by,

Fk =
1

N

N
2∑

n=−N
2

+1

f(xn) exp(−i2πnk/N).

The inverse DFT is a sequence defined by,

fn =

N
2∑

k=−N
2

+1

Fk exp(i2πnk/N),

for all n ∈
{
−N

2
+ 1, . . . , N

2

}
.

Some Properties of the DFT:

• If we assume that the inverse DFT is true not only for grid points of the form nA
N

, but
at any point in x ∈ (−A/2, A/2) then differentiation with respect to x yields,

f ′(x) =

N
2∑

k=−N
2

+1

Fk
i2πk

A
exp

(
i2πk

A
x

)
.

Thus, we conclude that the derivative of f at the grid points nA
N

(n ∈
{
−N

2
+ 1, . . . , N

2

}
)

can be estimated by,

f ′(xn) = f ′n =

N
2∑

k=−N
2

+1

Fk
i2πk

A
exp

(
i2πkn

N

)
.

• Reciprocity Relations : AΩ = N , ∆x∆ω = 1
N

, where N is the number of grid points,
x ∈ (−A/2, A/2), ω ∈ (−Ω/2,Ω/2).

• Largest period = A ⇒ Lowest frequency = 1
A

,
Shortest period = 2∆x = 2A

N
⇒ Highest frequency = N

2A
.

• The N modes of the DFT is the set of functions ei2πωkxn , where ωk = k
A

and xn = nA
N

.
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5 Heat Equation

Derivation (in class midterm problem 1(a))

We derive the heat equation for a rod assuming constant thermal properties with variable
cross-sectional area A(x) and sources Q(x) by considering the total thermal energy between
x = a and x = b.
Let e(x, t) be the thermal energy density. Then the total thermal energy between x = a and

x = b is given by
∫ b
a
e(x, t)A(x)dx.

Let φ(x, t) denote the heat flux. Then the conservation of heat energy equation is given by,

∂

∂t

∫ b

a

e(x, t)A(x)dx = φ(a, t)A(a)− φ(b, t)A(b) +

∫ b

a

Q(x)A(x)dx

= −
∫ b

a

∂

∂x
(φ(x, t)A(x))dx+

∫ b

a

Q(x)A(x)dx.

Since the above equation is true for any choice of a < b in the domain, and because of
∂
∂t

∫ b
a
e(x, t)A(x)dx =

∫ b
a

∂
∂t
e(x, t)A(x)dx, it follows that

∂

∂t
(e(x, t)A(x)) = − ∂

∂x
(φ(x, t)A(x)) +Q(x)A(x).

Let c denote the specific heat, and let ρ be the mass density. By assumption c and ρ
are constant. For a thin slice [x, x + ∆x] the total heat energy can be approximated as

e(x, t)
∫ x+∆x

x
A(x)dx and it can also be approximated as cρu(x, t)

∫ x+∆x

x
A(x)dx. Thus, it

follows that
e(x, t) = cρu(x, t).

Plugging this into the above equation yields,

cρ
∂

∂t
(u(x, t)A(x)) = − ∂

∂x
(φ(x, t)A(x)) +Q(x)A(x).

Now, by Fourier’s law of heat conduction φ = −K0ux (K0 > 0 constant) it follows that

cρ
∂

∂t
(u(x, t)A(x)) = K0

∂

∂x
(ux(x, t)A(x)) +Q(x)A(x).

Consequently, the heat equation is given by,

(Au)t = k(Aux)x +
k

K0

QA,

where k = K0

cρ
is the thermal diffusivity.
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Boundary Conditions

Prescribed Temperature u(0, t) = uB(t).

Prescribed Heat Flux / Insulated Boundary −K0(0)ux(0, t) = φ(t),

Newton’s Law of Cooling −K0(0)ux(0, t) = −H(u(0, t)−uB(t)), where H > 0 is the heat
transfer coefficient and constant (no minus sign in front of H at the right boundary
R, i.e. −K0(R)ux(R, t) = H(u(R, t)− uB(t))).

One boundary condition occurs at each boundary. It is not necessary that both boundaries
satisfy the same kind of boundary condition.

Maximum Principle

Theorem (Weak Maximum Principle). If u(x, t) satisfies the diffusion equation ut = kuxx
in a rectangle (x, t) ∈ [0, l]× [0, T ], then the maximum value of u is assumed either initially
(t = 0) or on the lateral sides (x = 0 or x = l).

Theorem (Strong Maximum Principle). The maximum cannot be assumed on the interior
but only on the bottom or the lateral sides of the rectangle (unless u is constant).

Uniqueness Proofs

Assume two solutions u and v. Then w := u− v is also a solution. Then,

• either apply the maximum principle to w,

• or apply the energy method, that is, consider 0 = 0 ·w = PDE ·w =“sum of some terms
differentiated w.r.t x”, then integrate w.r.t. x, then prove that

∫
w2 ≤ 0 or something

similar.
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6 Method of Characteristics

From P.Lax “The formation and decay of shock waves”

Characteristic Curves, Signal Speed. Given ut + (f(u))x = 0, denote ∂f
∂u

= a(u), then
ut + a(u)ux = 0.
Since ∂u

∂t
= ut + ∂x

∂t
ux (so, ∂x

∂t
= a(u) ⇒ ∂u

∂t
= 0), it follows that u is constant along

trajectories x(t) which propagate with speed a(u) (signal speed). Such trajectories are
called characteristics. The value of u along the characteristic can be determined from
the initial values u(x, 0).

Weak Solution. u is a weak solution (= u satisfies the PDE in the sense of distributions),
if for every continuously differentiable φ with compact support it holds that

∫ ∫
φtu+

φxf(u)dxdt = 0.

Rankine-Hugoniot Jump Condition. When the characteristics cross there exists a unique
weak solution which has a jump/shock. The shock occurs along the line y whose slope

is given by ∂y
∂t

= s = f(ur)−f(ul)
ur−ul

.

Lax Entropy Condition. A weak solution with a shock along the line with slope s =
f(ur)−f(ul)

ur−ul
exists and is unique if and only if a(ul) > a > a(ur).

From L. Escauriaza “Method Of Characteristics”

Consider a first-order quasilinear equation of a function of two variables with data prescribed
on a curve Γ in the xy-plane,

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u),

u|Γ = φ.

Derivation of the method of characteristics

The normal to the solution surface S = {(x, y, u(x, y))} at the point (x, y, u(x, y)) is given
by N(x, y) = (ux, uy,−1). If u is a solution then at each point (x, y) we have (a, b, c) ·
(ux, uy,−1) = 0. Thus, the vector (a(x, y, u), b(x, y, u), c(x, y, u)) lies in the tangent plane to
S. Therefore, in order to find the solution u, we need to construct a surface S, such that at
each point (x, y, z) of S, the vector (a(x, y, z), b(x, y, z), c(x, y, z)) lies in the tangent plane.
Thus, we construct curves which lie in S, the characteristic curves. This reduces the PDE
to a system of ODEs. Then S is the union of all characteristic curves.
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The method of characteristics

We parametrize Γ = {(γ1(r), γ2(r))}. A characteristic curve C = {(x, y, z)} satisfies the
following system of ODEs,

∂x

∂s
= a(x, y, z),

∂y

∂s
= b(x, y, z),

∂z

∂s
= c(x, y, z),

with initial conditions,

x(r, 0) = γ1(r),

y(r, 0) = γ2(r),

z(r, 0) = φ(r).

Solve the system using ODE theory. Then, u(x, y) = z(r(x, y), s(x, y)) solves the PDE.
A solution exists as long as Γ is a noncharacteristic boundary, that is, as long as

(a(γ1(r), γ2(r), φ(r)), b(γ1(r), γ2(r), φ(r))) · (−γ′2(r), γ′1(r)) 6= 0.
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7 Linearization Of PDEs

[Based on R. Leveque “Conservation Laws and Differential Equations”.]

Nonlinear Equations in Fluid Dynamics

Consider gas with variable density ρ (i.e. compressible), velocity u, pressure p, and isentropic
flow (i.e. p = P (ρ) with P ′(ρ) > 0 for ρ > 0).

ρt + (ρu)x = 0 (conservation of mass),

(ρu)t + (ρu2 + P (ρ))x = 0 (conservation of momentum).

Let q = (ρ, ρu)T = (q(1), q(2))T and f(q) = (q(2), (q(2))2/q(1) + P (q(1)))T = (ρu, ρu2 + P (ρ))T .
Then the system can be written as,

qt + f ′(q)qx = 0,

and differentiation yields,

f ′(q) =

(
0 1

−u2 + P ′(ρ) 2u

)
.

We write,

q(x, t) = q0 + q̃(x, t),

u = u0 + ũ,

ρ = ρ0 + ρ̃,

P (ρ) = p = p0 + p̃ = P (ρ0 + ρ̃) = P (ρ0) + P ′(ρ0)ρ̃+ . . . and p0 = P (ρ0) ⇒ p̃ ≈ P ′(ρ0)ρ̃,

ρ0u0 + ρ0ũ+ ρ̃u0 + . . . = (ρ0 + ρ̃)(u0 + ũ) = ρu = ρ0u0 + (̃ρu) ⇒ (̃ρu) ≈ ρ0ũ+ ρ̃u0.

With the aid of the above formulas, the linearized equation qt + f ′(q0)qx = 0 can be written
out in terms of its components as the system,

p̃t + u0p̃x +K0ũx = 0,

ρ0ũt + p̃x + ρ0u0ũx = 0,

where K0 = ρ0P
′(ρ0).

Equivalently, the linearized equation can be written in the form qt +Aqx = 0 with q = (p, u)
(abuse of notation: we dropped the tilde and re-defined q).

Sound Waves

We expect that the general solution is a superposition of waves moving in each direction,
with a constant speed s (the speed of sound) with its shape unchanged. This suggests looking
for solutions of the form q(x, t) = q̄(x − st), where q̄ is some function of one variable. By
basic manipulation it follows that Aq̄′(x− st) = sq̄′(x− st) (or = sq̄′(x+ st)). That is, s is
an eigenvalue of A and q̄ is the corresponding eigenvector.
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Hyperbolicity Of Linear Systems

Definition. A linear system of the form qt +Aqx = 0 is called hyperbolic if the matrix A is
diagonalizable with real eigenvalues.

We denote the EV λ1 ≤ λ2 ≤ . . . ≤ λm and the EVec r1, . . . , rm. Let R = [r1| . . . |rm],
then R−1AR = Λ = diag(λ1, . . . , λm). It follows that

wt + Λwx = 0,

where w(x, t) = R−1q(x, t).
The solution will consist of m waves travelling at the characteristic speeds λ1, . . . , λm.
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8 Classification of PDE’s

The most general form of a linear, second order PDE in two independent variables x, y
and the dependent variable u(x, y) is

A
∂2u

∂x2
+B

∂2u

∂x∂y
+ C

∂2u

∂y2
+D

∂u

∂x
+ E

∂u

∂y
+ Fu+G = 0,

with constant A, . . . , G. This equation is called elliptic if B2 − 4AC < 0, parabolic if
B2 − 4AC = 0, and hyperbolic if B2 − 4AC > 0.

Hyperbolic PDE Parabolic PDE Elliptic PDE
Wave Eq. Heat / Diffusion Eq. Laplace / Poisson Eq.
utt = uxx ut = uxx −∆u = 0

IVP, or IBVP+BC IVP, or IBVP BVP
Euler Eq. Navier Stokes Stokes
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9 Green’s Functions for One-Dimensional Equations

Definition (Singularity functions). A singularity function K(x, ξ) of the operator L defined
by Lu(x) = −u′′(x)− c(x)u(x) is characterized by three properties:

(a) K is continuous,

(b) Kx is continuous in x < ξ and in x > ξ, and Kx(x
+, x)−Kx(x

−, x) = −1,

(c) Kxx is continuous and LK = 0 for x 6= ξ.

If K is a singularity function then so is K + H, where H(x, ξ) is any function with
continuous H and Hx and with LH = 0.

Definition (Green’s function). The Green’s function G(x, ξ) for the operator L and the
domain (a, b) with Dirichlet boundary conditions is the singularity function that satisfies the
homogeneous Dirichlet condition G(a, ξ) = 0 and G(b, ξ) = 0.

Theorem. If u satisfies u′′ + cu = −f on (a, b) with BC u(a) = 0 = u(b), then

u(ξ) =

∫ b

a

G(x, ξ)f(x)dx,

for all ξ ∈ (a, b).

Theorem. The solution of u′′ + cu = 0 with BC u(a) = h0 and u(b) = h1 satisfies

u(ξ) = Gx(a, ξ)h0 −Gx(b, ξ)h1,

for all ξ ∈ (a, b).

Theorem (Reciprocity Principle). G(x, ξ) = G(ξ, x) for all x, ξ ∈ (a, b).

Finding the Green’s function and using it to solve a PDE

A singularity function of − ∂2

∂x2
is given by

K(x, ξ) = −1

2
|x− ξ|.

The Green’s function for the interval (0, 1) can be found by solving Hxx = 0 with boundary
conditions H(0, ξ) = −K(0, ξ) and H(1, ξ) = −K(1, ξ), and then setting G = K +H. This
yields

G(x, ξ) = −1

2
|x− ξ|+ 1

2
(x+ ξ)− xξ.
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By the above theorems, it holds that u(x) =
∫ b
a
G(x, ξ)f(ξ)dξ and u(x) = Gξ(x, a)h0 −

Gξ(x, b)h1. Thus, the solution of −u′′ = f with BC u(0) = h0 and u(1) = h1 is given by,

u(x) =

∫ 1

0

G(x, ξ)f(ξ)dξ +Gξ(x, 0)h0 −Gξ(x, 1)h1

= (1− x)

∫ x

0

ξf(ξ)dξ + x

∫ 1

x

(1− ξ)f(ξ)dξ + (1− x)h0 + xh1.
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